» » Состав аминокислот с разветвленной боковой цепью. Главное в белке - последовательность аминокислот

Состав аминокислот с разветвленной боковой цепью. Главное в белке - последовательность аминокислот
Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекул

ы белка (для этого используйте таблицу генетического кода).

Фрагмент и-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).

Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ.
Установите нуклеотидную последовательность т-РНК, которая синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК, если третий триплет соответствует антикодону т-РНК. Для решения задания используйте таблицу генетического кода.

Задача № 1.

Фрагмент цепи иРНК имеет последовательность нуклеотидов: ЦЦЦАЦЦГЦАГУА. Определите последовательность нуклеотидов на ДНК, антикодоны тРНК и последовательность аминокислот во фрагменте молекулы белка, используя таблицу генетического кода.

Задача № 2. Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ТАЦЦЦТЦАЦТТГ. Определите последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода.

Задача № 3
Последовательность нуклеотидов фрагмента цепи ДНК ААТГЦАГГТЦАЦТЦА. Определите последовательность нуклеотидов в и-РНК, аминокислот в полипептидной цепи. Что произойдет в полипептиде, если в результате мутации во фрагменте гена выпадет второй триплет нуклеотидов? Используйте таблицу гент.кода
Практикум-решение задач по теме « Биосинтез белка» (10 класс)

Задача № 4
Участок гена имеет следующее строение: ЦГГ-АГЦ-ТЦА-ААТ. Укажите строение соответствующего участка того белка, информация о котором содержится в данном гене. Как отразится на строении белка удаление из гена четвёртого нуклеотида?
Задача № 5
Белок состоит из 158 аминокислот. Какую длину имеет кодирующий его ген?
Молекулярная масса белка Х=50000. Определите длину соответствующего гена. Молекулярная масса одной аминокислоты в среднем 100.
Задача № 6
Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок инсулин из 51 аминокислоты?
Задача № 7
Одна из цепей ДНК имеет молекулярную массу 34155. Определите количество мономеров белка, запрограммированного в этой ДНК. Молекулярная масса одного нуклеотида в среднем 345.
Задача № 8
Под воздействием азотистой кислоты цитозин превращается в гуанин. Как изменится строение синтезируемого белка вируса табачной мозаики с последовательностью аминокислот: серин-глицин-серин-изолейцин-треонин-пролин, если все цитозиновые нуклеотиды подверглись действию кислоты?
Задача № 9
Какова молекулярная масса гена (двух цепей ДНК), если в одной цепи его запрограммирован белок с молекулярной массой 1500? Молекулярная масса одной аминокислоты в среднем 100.
Задача № 10
Дан фрагмент полипептидной цепи: вал-гли-фен-арг. Определите структуру соответствующих т-РНК, и-РНК, ДНК.
Задача № 11
Дан фрагмент гена ДНК: ЦЦТ-ТЦТ-ТЦА-А… Определите: а) первичную структуру белка, закодированного в этом участке; б) длину этого гена;
в)первичную структуру белка, синтезированного после выпадения 4-го нуклеотида
в этой ДНК.
Задача № 12
Сколько будет кодонов в и-РНК, нуклеотидов и триплетов в гене ДНК, аминокислот в белке, если даны 30 молекул т-РНК?
Задача № 13

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок центральной петли т-РНК, имеет следующую последовательность нуклеотидов: АТАГЦТГААЦГГАЦТ. Установите нуклеотидную последовательность участка т-РНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта т-РНК в процессе биосинтеза белка, если третий триплет соответствует антикодону т-РНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44

Валин – одна из трех аминокислот, входящих в группу соединений с разветвленной цепью. Ее собратьями с похожей структурной формулой являются лейцин и изолейцин. Эти три аминокислоты – неразлучные друзья и употреблять их следует вместе, ибо они вместе выполняют свои функции в организме.

Структурная формула валина:

Улеродный скелет валина на одну углеродину больше по сравнению с аланином , но ко второму атому углерода (в β-положении) прилепилась не одна углеродная последовательность, а две, т.е. аминокислота с одного конца как бы раздвоилась, за что и получила название аминокислота с разветвленной цепью.

Аминокислоты с разветвленной цепью (валин, лейцин, изолейцин) составляют около 45% от содержания всех незаменимых аминокислот в тканях. Разветвленные аминокислоты предупреждают распад белков в той же степени, как и введение полного набора аминокислот.

Валин – это незаменимая протеиногенная аминокислота. Организм не синтезирует данное соединение, и оно должно поступать извне с продуктами питания. Попадая в желудочно-кишечный тракт, валин поступает в печень. В печени отсутствуют ферменты для метаболизма аминокислот с разветвленной цепью, и она задерживает другие аминокислоты для биохимических превращений, а этим, в т.ч. валину дает зеленый свет для поступления в общий кровоток, в результате происходит разделение аминокислот пищевого белка, и в мышцы отправляется преимущественно смесь аминокислот с разветвленной цепью, все те же три друга – валин, лейцин, изолейцин. Именно там они вступают в реакции переноса аминогрупп, обеспечивая мышцы энергией.

Формирование фонда свободных аминокислот с разветвленной цепью в печени зависит от содержания таурина, который регулирует превращение аминокислот в глюкозу.

В мышцах разветвленные аминокислоты включаются в синтез мышечного белка, формируя резерв, из которого они могут быть мобилизованы во время физической нагрузки. Во время работы мышечный белок распадается, и разветвленные аминокислоты вступают в цепь биохимических превращений, конечным продуктом которых является глюкоза, обеспечивающая работу энергией. Надо сказать, что все время работы внутримышечный фонд свободных аминокислот остается постоянным, но после нагрузки он возрастает, т.е. существует определенная инерция биохимического конвейера.

Потребность в валине составляет 3 — 4 г. в сутки.

Функции

  • Структурная
  • Энергетическая
  • Иммуногенная
  • Регуляторная

Структурная функция

Валин входит в состав практически всех белков, придавая им гидрофобные свойства, т.е. белок отталкивает от себя воду, повисая в водной среде автономной капелькой-глобулей. Особенно много данной аминокислоты в альбумине, казеине, белках соединительной ткани, накапливается он и в мышцах.

Валин является предшественником витамина Б3 (пантотеновой кислоты).

Он защищает миелиновую оболочку – изолятор нервного волокна.

Энергетическая функция

Валин – глюкогенная аминокислота, которая в процессе метаболизма превращается в сукцинил-КоА, а затем включается в энергетическую цепь, в результате которой образуется глюкоза. Вместе со своими разветвленными братьями – лейцином и изолейцином – он обеспечивает энергией работу мышц, за что полюбился бодибилгерам. При физической нагрузке аминокислоты с разветвленной цепью, и валин в частности, являются основным источником аминного азота в скелетной мышце. Значительная их часть высвобождается при распаде мышечных белков, что требует увеличение потребления данных аминокислот с пищей. Прием коммерческих препаратов аминокислот с разветвленной цепью в этих условиях является оправданным, т.к. он компенсирует нагрузочный распад мышечных белков.

Иммуногенная функция

Валин обеспечивает энергией выработку иммунокомпетентных клеток. Превращаясь в сукцинил КоА, он вступает в энергетический конвейер дыхательной цепи, давая на выходе энергию в виде молекул АТФ. Наибольшее влияние данная аминокислота оказывает на клеточный иммунитет, как наиболее энергоемкий.

Регуляторная функция

Валин участвует в регулировании работы гипофиза: железы головного мозга, настраивающей гормональный оркестр организма. Он стимулирует выработку гормона роста, который поддерживает синтез белка в противовес его распаду.

При алкоголизме и наркомании выявлены характерные нарушения баланса аминокислот, в т.ч. с разветвленной цепью, среди которых важная роль принадлежит валину. При эмоциональных нарушениях, связанных с зависимостями, клеткам головного мозга требуется больше энергии, которую они получают, утилизируя аминокислоты с разветвленной цепью, в частности, валин. Активизируется распад белков в зонах мозга, отвечающих на регуляцию эмоций и общий тонус организма, что приводит к нарушению функциональной активности этих зон и увеличению выраженности подавленности и раздражительности.

Валин влияет на выработку гормона радости – серотонина, дефицит валина провоцирует депрессию, и, наоборот, при балансе аминокислот настроение повышается, человек испытывает прилив бодрости и подъем общего жизненного тонуса. Валин и триптофан являются конкурентами за транспорт при преодолении гематоэнцефалического барьера. Избыток валина тормозит накопление триптофана в головном мозге и при передозировке может приводить к нарушению мозговых функций вплоть до галлюцинаций.

При алкогольной энцефалопатии (нарушении мозговой функции) из-за плохой работы печени, отравленной алкоголем, в крови повышается концентрация ароматических аминокислот (триптофан, фенилаланин) и уменьшается количество аминокислот с разветвленной цепью (валин, лейцин, изолейцин). В результате конкуренции за транспорт, переносящий аминокислоты через гематоэнцефалический барьер, концентрация валина в головном мозге уменьшается, а триптофана возрастает. Ни к чему хорошему это не приводит, ибо отсутствие разветвленных аминокислот лишает мозг энергии на выработку нейромедиаторов. Энергетически-дефицитный мозг погружается в депрессию и начинает работать через пень-колоду, что внешне выражается в ослаблении умственных параметров.

Валин понижает чувствительность к боли, улучшает адаптацию к жаре и холоду. Будучи глюкогенной аминокислотой, он подавляет аппетит, уменьшает тягу к сладкому через регуляцию уровня сахара в крови.

Он необходим для поддержания нормального азотистого баланса в организме.

Источники

Наибольшее количество содержится в яйцах, сыре и других молочных продуктах, мясе, рыбе, особенно лососевых, кальмарах. Из растительных продуктов валин в пристойных концентрациях можно получить из орехов, особенно грецких, фисташек, красной фасоли, тыквенных и подсолнечных семечек, морской капусте.

В процессе приготовление содержание валина в продуктах изменяется: в мясе, курице, рыбе его становится больше при тушении или отваривании, чем в сыром продукте или после обжарки. В яйцах, напротив, при жарке количество валина увеличивается по сравнению с сырым или вареным продуктом.

Для хорошего усвоения валина необходимо присутствие других аминокислот с разветвленной цепью – лейцина и изолейцина в соотношении валин: лейцин: изолейцин = 1: 1: 2. В коммерческих препаратах этот баланс выдержан.

Валин хорошо сочетается с медленными углеводами (крупы, хлеб грубого помола) и полиненасыщенными жирными кислотами (рыбий жир, льняное масло).

Так, сына Пармезана достаточно всего 200 г, яиц придется скушать 5 штук — нехилая яичница, а молока выпить чуть не 2 литра. Впрочем, можно обойтись 200 г. говядины, 250 г. индейки или свиной вырезки. Если вы вегетарианец, то вам придется слузгать стакан очищенных тыквенных семечек или скушать 400 г. отварной сои (что маловероятно) или килограмм гороховой каши (что совсем невероятно), грецких орехов потребуется полкило, остальные продукты можно не считать, потому что съесть необходимое количество не в человеческих силах. Я ни к чему не призываю, я лишь показываю на примере, чем грозит вегетарианская диета.

Дефицит

Недостаток валина в организме может быть как абсолютным, при недостаточном поступлении аминокислоты с продуктами питания, так и относительным, когда увеличивается потребность в этой аминокислоте в связи с физиологическими или патологическими процессами в организме.

При вегетарианской диете очень трудно соблюдать белковый баланс: если бездумно налегать на одни овощи и фрукты, очень легко получить проблемы, связанные с недостатком аминокислот, в первую очередь незаменимых. Дефицит валина может возникнуть и при недостаточном всасывании его в желудочно-кишечном тракте в связи с заболеваниями органов пищеварения.

Потребность в валине увеличивается в связи со следующими состояниями:

  1. Спортивные тренировки, особенно связанные с выработкой силы и выносливости
  2. Стресс, как психологический, так и физиологический: травмы, ожоги, перенесенные операции, кровопотеря и др.
  3. Патологические зависимости: пристрастие к алкоголю, наркотикам, в т.ч. никотину, и просто тяга к сладкому и желание жрать все без разбору.
  4. Заболевания центральной нервной системы: рассеянный склероз, депрессия
  5. Острые инфекционные заболевания: ОРВИ, пневмонии и др.

Применение

  1. Для повышения результативности тренировок, особенно в бодибилдинге и тяжелой атлетике.
  2. Лечение депрессий, бессонницы, мигрени, восстановление положительного эмоционального фона, в комплексном лечении рассеянного склероза
  3. Лечение патологических зависимостей: табакокурения, алкоголизма, наркомании
  4. Контроль аппетита, устранение тяги к сладкому, контроль веса, увеличение обмена веществ для сжигания жира и наращивания мышечной массы
  5. В комплексном лечении шока, при ожогах, травмах, операциях, чрезмерной кровопотере
  6. Стимуляция иммунитета в период сезонного подъема простудных заболеваний

Избыток

Потребление валина в слишком высоких дозах не безразлично для организма, поэтому не следует превышать рекомендуемые суточные дозировки — более 4 г. В лучшем случае передоз проявляется в парестезиях: чувство онемение конечностей, ползания мурашек, возможны аллергические реакции, дерматиты, расстройство пищеварения, повышенная тревожность. Регулярные передозировки могут привести к сгущению крови, вызвать дисфункцию печени и почек, увеличить уровень аммиака в организме, что проявляется в тошноте и рвоте. При сильном избытке валина возникает озноб, учащенное сердцебиение, страхи вплоть до галлюцинаций.

Заключение

Валин ускоряет синтез белка, способствует наращиванию мышечной массы, улучшает координацию движений, повышает выносливость. Он улучшает работу мозга, увеличивает работоспособность, борется с депрессией, способствует поддержанию хорошего настроения. Помогает преодолеть патологические зависимости: снижает тягу к алкоголю, наркотикам, сладостям, убирает негативный фон при отказе от продуктов, к которым имеется зависимость, подавляет чрезмерный аппетит. Способствует заживлению ран, восстанавливает эластин и коллаген в коже, что имеет значение при кожных заболеваниях, таких как дерматит или экзема. Усиливает Т-клеточный иммунитет, что немаловажно при вирусных и бактериальных инфекциях.

Валин необходим, чтобы хорошо себя чувствовать и красиво выглядеть.

Давайте посмотрим фактам в лицо — многие из нас ежедневно посещают тренажёрный зал не только ради душевного равновесия и интеллектуальной разгрузки, но и потому, что мы хотим выглядеть более привлекательно перед зеркалом. И не важно, является ли вашей целью гармония движений (баланс, предотвращение падений), большие бицепсы или рельефное тело, настало время добавить к вашему арсеналу.

Что такое аминокислоты с разветвлённой цепью (BCAA)?

Аминокислоты с разветвлённой цепью включают , изолейцин и валин. Они называются аминокислотами с разветвлённой цепью, так как имеют боковые цепи, «ответвляющиеся» от основной. BCAA представляют собой три из восьми незаменимых аминокислот — это значит, что мы должны получать их с пищей, так как организм не способен синтезировать эти соединения самостоятельно.

Аминокислоты представляют собой небольшие блоки, из которых строится белок. Различные аминокислоты связываются между собой в разных последовательностях, формируя разнообразные белки. Кроме того, что они служат строительными блоками белков, аминокислоты образуют коферменты (коферменты очень важны для функционирования ферментов; ферменты являются катализаторами биохимических реакций в нашем организме) и служат предшественниками молекул, синтезируемых в нашем теле.

Каждая аминокислота в разных количествах присутствует в разнообразных продуктах:

  • Лейцин — , соя, молоко и сыр.
  • Изолейцин — мясо, птица, рыба, свинина, сывороточный протеин, казеин, яйца, соя, творог, молоко и .
  • Валин — сывороточный белок, казеин, яичный белок, протеин сои, молоко, сыр, сыворотка и творог.

Аминокислоты с разветвлённой цепью и рост мышечной ткани

Аминокислоты с разветвлённой цепью могут предотвращать повреждения мышц

Аминокислоты с разветвлённой цепью необходимы для предотвращения катаболизма в период восстановления после упражнений. После сессии упражнений с отягощением процессы синтеза белка в мышцах, а также их микроповреждения усиливаются, однако, в действительности, разрушения преобладают над синтезом! Именно в этот момент на сцену вступают аминокислоты с разветвлённой цепью. Они могут влиять на катаболические эффекты, связанные с выполнением силовых упражнений.

Аминокислоты с разветвлённой цепью могут влиять на боль в мышцах

Несколько исследований предполагают, что аминокислоты с разветвлённой цепью способствуют более позднему возникновению боли в мышцах и образованию маркёров разрушения мышечной ткани, связанных с интенсивной физической нагрузкой (упражнения с отягощением и упражнения на выносливость). Менее выраженное разрушение мышц и мышечные боли означают более быструю регенерацию, а чем быстрее вы восстанавливаетесь, тем скорее возвращаетесь в спортзал и возобновляете тренировки.

Лейцин и рост мышечной ткани

Потенциально лейцин играет критическую роль в синтезе протеина; процесс разрушения мышц после тренировки превосходит процессы регенерации до тех пор, пока в организм не поступит лейцин или .

Аминокислоты с разветвлённой цепью влияют на то, каким образом вы сжигаете жировую ткань

Аминокислоты с разветвлённой цепью или, возможно, лейцин сам по себе могут быть полезны с точки зрения избавления от лишнего веса, особенно во время соблюдения диеты. Учёные предполагают, что BCAA участвуют в регуляции чувства насыщения, уровня лептина (гормона жировой ткани, который посылает сигнал в мозг о том, что вы насытились), жировой ткани и веса тела.

В одном интересном исследовании с участием лучших борцов, находящихся на низкокалорийной диете, приём BCAA помогал участникам избавляться от большего количества жировой ткани, абдоминального жира и веса.

Когда и сколько?

Препараты с BCAA

В настоящее время трудно сказать, какой должна быть точная доза BCAA на килограмм массы тела, чтобы влиять на рост мышц и предотвращать их повреждение. Однако мы советуем смешивать 3-12 г вещества со спортивными напитками за один час до упражнений и попивать такой напиток маленькими глотками во время выполнения упражнения, которое длится более 1 часа. Женщины-спортсменки с небольшой массой тела могут принимать примерно 3-5 г BCAA, в то время как более грузным атлетам может понадобиться большая доза. Только те спортсмены, которые участвуют в очень длинных сессиях упражнений на выносливость (велосипедные гонки длительностью несколько часов, длинные восхождения и т.д.) могут рассмотреть вариант приёма 12 г данного вещества.

Зачем смешивать BCAA со спортивным напитком? Сахар в напитке поднимет уровень инсулина, анаболического гормона, и даст вам энергию и «топливо», необходимые для тренировки.

  • Ешьте! Вы должны потреблять достаточное количество калорий и белка, чтобы стимулировать мышечный рост. Поскольку уровень протеина колеблется в течение дня, лучше всего принимать пищу маленькими порциями на протяжении всего дня так, чтобы каждая из них содержала, по крайней мере, 20 г белка.
  • Составьте график тренировок. Они должны быть специально разработаны, чтобы принести именно те результаты, о которых вы мечтаете. И они должны периодически меняться, чтобы рост мышечной массы продолжался, так как ваше тело адаптируется к привычным занятиям.
  • Поднимайте веса для укрепления мышечной силы и их гипертрофии (в зависимости от вашей цели). Да, это две разные цели. Подъём весов для увеличения силы мышц не обязательно увеличивает мышцу в объёме, но улучшит нервно-мышечную адаптацию, давая большую силу. Подъём весов с целью гипертрофии увеличит размер мышц.

Если ваша цель — стать больше или сильнее (и практически всем от 18 до 80+ должно хотеться иметь крепкие мышцы, как для функциональной силы, так и для здоровья костей), то в этом случае вы должны подумать о включении BCAA в ваш арсенал добавок. Аминокислоты с разветвлённой цепью могут влиять на разрушение мышц, восстановление и повреждение мышечной ткани. Кроме того, последние научные исследования по-прежнему сфокусированы на ключевой роли лейцина в синтезе белка мышц. Если вы строите красивое тело, вам поможет BCAA.

Аминокислоты - (аминокарбоновые кислоты; амк) — органические соединения , в молекуле которых одновременно содержатся карбоксильные и аминные группы (аминогруппы). Т.е. а минокислоты могут рассматриваться , как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

  • Карбоксильная группа (карбоксил) -СООН — функциональная одновалентная группа, входящая в состав карбоновых кислот и определяющая их кислотные свойства.
  • Аминогруппа — функциональная химическая одновалентная группа -NH 2 , органический радикал, содержащий один атом азота и два атома водорода.

Известно более 200 природных аминокислот , которые можно классифицировать по-разному. Структурная классификация исходит из положения функциональных групп на альфа-, бета-, гамма- или дельта- положении аминокислоты.

Кроме этой классификации, существуют еще и другие, например, классификация по полярности, рН уровню, а также типу группы боковой цепи (алифатические, ациклические, ароматические аминокислоты, аминокислоты, содержащие гидроксил или серу, и т.д.).

В виде белков аминокислоты являются вторым (после воды) компонентом мышц, клеток и других тканей человеческого организма. Аминокислоты играют решающую роль в таких процессах, как транспорт нейротрансмиттеров и биосинтезе.

Общая структура аминокислот

Аминокислоты - биологически важные органические соединения, состоящие из аминогруппы (-NH 2) и карбоновой кислоты (-СООН), и имеющие боковую цепь, специфичную для каждой аминокислоты. Ключевые элементы аминокислот - углерод, водород, кислород и азот. Прочие элементы находятся в боковой цепи определенных аминокислот.

Рис. 1 - Общая структура α-аминокислот, составляющих белки (кроме пролина). Составные части молекулы аминокислоты — аминогруппа NH 2 , карбоксильная группа COOH, радикал (различается у всех α-аминокислот), α-атом углерода (в центре).

В структуре аминокислот боковая цепь, специфичная для каждой аминокислоты, обозначается буквой R. Атом углерода, находящийся рядом с карбоксильной группой, называется альфа-углерод, и аминокислоты, боковая цепь которых связана с этим атомом, называются альфа-аминокислотами. Они представляют собой наиболее распространенную в природе форму аминокислот.

У альфа-аминокислот, за исключением глицина , альфа-углерод является хиральным атомом углерода. У аминокислот, углеродные цепи которых присоединяются к альфа-углероду (как, например, Лизин (L-лизин)), углероды обозначаются как альфа, бета, гамма, дельта, и так далее. У некоторых аминокислот аминогруппа прикреплена к бета или гамма-углероду, и поэтому они называются бета- или гамма- аминокислоты.

По свойствам боковых цепей аминокислоты подразделяются на четыре группы. Боковая цепь может делать аминокислоту слабой кислотой, слабым основанием, или эмульсоидом (если боковая цепь является полярной), или гидрофобным, плохо впитывающим воду, веществом (если боковая цепь неполярна).

Термин «аминокислота с разветвленной цепью» относится к аминокислотам, имеющим алифатические нелинейные боковые цепи, это Лейцин , Изолейцин и Валин .

Пролин - единственная протеиногенная аминокислота, боковая группа которой прикреплена к альфа-аминогруппе и, таким образом, также является единственной протеиногенной аминокислотой, содержащей на этом положении вторичный амин. С химической точки зрения, пролин, таким образом, является иминокислотой , поскольку в нем отсутствует первичная аминогруппа, хотя в текущей биохимической номенклатуре он все еще классифицируется как аминокислота, а также «N-алкилированная альфа-аминокислота» (Иминокислоты — карбоновые кислоты, содержащие иминогруппу (NH). Входят в состав белков, их обмен тесно связан с обменом аминокислот. По своим свойствам иминокислоты близки к аминокислотам, и в результате каталитического гидрирования иминокислоты превращаются в аминокислоты. Иминогруппа — молекулярная группа NH. Двухвалентна. Содержится во вторичных аминах и пептидах. В свободном виде двухвалентный радикал аммиака не существует).

АЛЬФА-АМИНОКИСЛОТЫ

Аминокислоты, имеющие как амин-, так и карбоксильную группу, прикрепляются к первому (альфа-) атому углерода имеют особое значение в биохимии. Они известны как 2-, альфа или альфа-аминокислоты (общая формула в большинстве случаев H 2 NCHRCOOH, где R представляет собой органический заместитель, известный как «боковая цепь»); часто термин «аминокислота» относится именно к ним.

Это 22 протеиногенных (то есть «служащих для строительства белка») аминокислоты, которые сочетаются в пептидные цепи («полипептиды»), обеспечивая построение широкого спектра белков. Они являются L-стереоизомерами («левыми» изомерами), хотя у некоторых бактерий и в некоторых антибиотиках встречаются некоторые из D-аминокислот («правых» изомеров).

Рис. 2. Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH 2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

ОПТИЧЕСКАЯ ИЗОМЕРИЯ АМИНОКИСЛОТ


Рис. 3. Оптические изомеры аминокислоты аланина

В зависимости от положения аминогруппы относительно 2-го атома углерода выделяют α-, β-, γ- и другие аминокислоты. Для организма млекопитающих наиболее характерны α-аминокислоты. Все входящие в состав живых организмов α-аминокислоты, кроме глицина , содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белков, синтезируемых на рибосомах .

Все стандартные альфа-аминокислоты, кроме глицина, могут существовать в форме одной из двух энантиомеров , называемых L или D аминокислоты, представляющих собой зеркальные отображения друг друга.

D, L -Система обозначения стереоизомеров.

По этой системе L -конфигурация приписывается стереозомеру, у которого в проекций Фишера реперная группа находится слева от вертикальной линии (от лат. "laevus" -левый). Надо помнить, что в проекции Фишера вверху располагают наиболее окисленный атом углерода (как правило, этот атом входит в состав карбоксильной СОOН или карбонильной СН=О групп.). Кроме того, в проекции Фишера все горизонтальные связи направлены в сторону наблюдателя, а вертикальные — удалены от наблюдателя. Соответственно, если реперная группа расположена в проекции Фишера справа, стереоизомер имеет D - конфигурацию (от лат. "dexter" - правый). В α-аминокислотах реперными группами служат группы NH 2.

Энантиомеры — пара стереоизомеров , представляющих собой зеркальные отражения друг друга, не совмещаемые в пространстве. Классической иллюстрацией двух энантиомеров могут служить правая и левая ладони: они имеют одинаковое строение, но различную пространственную ориентацию. Существование энантиомерных форм связано с наличием у молекулы хиральности — свойства не совмещаться в пространстве со своим зеркальным отражением. .

Энантиомеры идентичны по физическим свойствам. Они могут быть различены лишь при взаимодействии с хиральной средой, например, световым излучением. Энантиомеры одинаково ведут себя в химических реакциях с ахиральными реагентами в ахиральной среде. Однако, если реагент, катализатор либо растворитель хиральны, реакционная способность энантиомеров, как правило, различается. Большинство хиральных природных соединений (аминокислоты , моносахариды ) существует в виде 1 энантиомера. Понятие энантиомерии важно в фармацевтике , т.к. различные энантиомеры лекарств , имеют различную биологическую активность.

БИОСИНТЕЗ БЕЛКА НА РИБОСОМЕ

СТАНДАРТНЫЕ АМИНОКИСЛОТЫ

(протеиногенные)

См. к теме: и Строение протеиногенных аминокислот

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот , кодируемых генетическим кодом (см. рис. 4). Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций.

Прим.: В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин и пирролизин. Это так называемые 21-я и 22-я аминокислоты.

Аминокислоты являются структурными соединениями (мономерами), из которых состоят белки. Они объединяются между собой, формируя короткие полимерные цепи, называемые пептидами длинной цепи, полипептидами или белками. Эти полимеры являются линейными и неразветвленными, каждая аминокислота в цепи присоединяется к двум соседним аминокислотам.

Рис. 5. Рибосома в процессе трансляции (синтеза белка)

Процесс построения белка называется трансляцией и включает в себя пошаговое добавление аминокислот к растущей цепи белка через рибозимы, осуществляемый рибосомой. Порядок, в котором добавляются аминокислоты, считывается в генетическом коде с помощью шаблона мРНК , который представляет собой копию РНК одного из генов организма.

Трансляция - биосинтез белка на рибосоме

Рис. 6 Стадии элонгации полипептида.

Двадцать две аминокислоты естественно включены в полипептиды и называются протеиногенными, или природными, аминокислотами. Из них 20 кодируются с помощью универсального генетического кода.

Оставшиеся 2, селеноцистеин и пирролизин , включаются в белки при помощи уникального синтетического механизма. Селеноцистеин образуется, когда транслируемый мРНК включает SECIS элемент, вызывающий кодон UGA вместо стоп-кодона. Пирролизин используется некоторыми метаногенными археями в составе ферментов, необходимых для производства метана. Он кодируется с кодоном UAG, который в других организмах обычно играет роль стоп-кодона. За кодоном UAG следует PYLIS последовательность.


Рис. 7. Полипептидная цепь - первичная структура белка.

Белки имеют 4 уровня своей структурной организации: первичная, вторичная, третичная и четвертичная. Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков.Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями.Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.


Рис. 8. Структурная организация белков

НЕСТАНДАРТНЫЕ АМИНОКИСЛОТЫ

(Не-протеиногенные)

Помимо стандартных аминокислот существует множество других аминокислот, которые называются не-протеиногенными или нестандартными. Такие аминокислоты либо не встречаются в белках (например, L-карнитин , ГАМК ), либо не производятся непосредственно в изоляции при помощи стандартных клеточных механизмов (например, оксипролин и селенометионин).

Нестандартные аминокислоты, находящиеся в белках, образуются путем пост-трансляционной модификации, то есть модификацией после трансляции в процессе синтеза белка. Эти модификации часто необходимы для функционирования или регуляции белка; например, карбоксилирование глутамата позволяет улучшить связывание ионов кальция, а гидроксилирование пролина важно для поддержания соединительной ткани. Другой пример - формирование гипузина в фактор инициации трансляции EIF5A посредством модификации остатка лизина . Такие модификации могут также определять локализацию белка, например, добавление длинных гидрофобных групп может вызвать связывание белка с фосфолипидной мембраной.

Некоторые нестандартные аминокислоты не встречаются в белках. Это лантионин, 2-аминоизомасляная кислота, дегидроаланин и гамма-аминомасляная кислота. Нестандартные аминокислоты часто встречаются в качестве промежуточных метаболических путей для стандартных аминокислот - например, орнитин и цитруллин встречаются в орнитиновом цикле как часть катаболизма кислоты.

Редкое исключение доминированию альфа-аминокислоты в биологии - бета-аминокислота Бета-аланин (3-аминопропановая кислота), которая используется для синтеза пантотеновой кислоты (витамина B5), компонента коэнзима А у растений и микроорганизмов. Ее, в частности, продуцируют пропионовокислые бактериии .

Функции аминокислот

БЕЛКОВЫЕ И НЕ БЕЛКОВЫЕ ФУНКЦИИ

Многие протеиногенные и непротеиногенные аминокислоты также играют важную, не связанную с образованием белка, роль в организме. Например, в головном мозге человека глутамат (стандартная глутаминовая кислота) и гамма-аминомасляная кислота (ГАМК , нестандартная гамма-аминокислота), являются основными возбуждающими и тормозящими нейромедиаторами. Гидроксипролин (основной компонент соединительной ткани коллагена) синтезируют из п ролина ; стандартная аминокислота глицин используется для синтеза порфиринов , используемых в эритроцитах. Нестандартный карнитин используется для транспорта липидов.

Из-за своей биологической значимости аминокислоты играют важную роль в питании и обычно используются в пищевых добавках, удобрениях и пищевых технологиях. В промышленности аминокислоты используются при производстве лекарств, биоразлагаемого пластика и хиральных катализаторов.

1. Аминокислоты, белки и питание

О биологической роли и последствиях дефицита аминокислот в организме человека см. информацию в таблицах незаменимых и заменимых аминокислот.

При введении в организм человека с пищей, 20 стандартных аминокислот либо используются для синтеза белков и других биомолекул, либо окисляются в мочевину и углекислый газ в качестве источника энергии. Окисление начинается с удаления аминогруппы через трансаминазу, а затем аминогруппа включается в цикл мочевины. Другой продукт трансамидирования - кетокислота, которая входит в цикл лимонной кислоты. Глюкогенные аминокислоты также могут быть преобразованы в глюкозу посредством глюконеогенеза.

Из 20 стандартных аминокислот , 8 (валин , изолейцин , лейцин , лизин , метионин , треонин , триптофан и фенилаланин ) называют незаменимыми потому, что человеческий организм не может синтезировать их самостоятельно из других соединений в необходимых для нормального роста количествах, их можно получить только с пищей. Однако по современным представлениям Гистидин и Аргинин также являются незаменимыми аминокислотами для детей. Другие могут быть условно незаменимы для людей определенного возраста или людей, имеющих какие-либо заболевания.

Кроме того, Цистеин , Таурин , считаются полузаменимыми аминокислотами у детей (хотя таурин технически не является аминокислотой), потому что метаболические пути, которые синтезируют эти аминокислоты, у детей еще не полностью развиты. Необходимые количества аминокислот также зависят от возраста и здоровья человека, поэтому довольно сложно давать здесь общие диетические рекомендации.

БЕЛКИ

Белки́ (протеины, полипептиды) — высокомолекулярные органические вещества , состоящие из альфа- аминокислот , соединённых в цепочку пептидной связью . В живых организмах аминокислотный состав белков определяется генетическим кодом , при синтезе в большинстве случаев используются 20 стандартных аминокислот .

Рис. 9. Белки не только пища... Типы белковых соединений.

Каждый живой организм состоит из белков . Различные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти; белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками. Дефицит белков в организме опасен для здоровья. Каждый белок уникален и существует для специальных целей.


Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Стоит подчеркнть, что современная наука о питании утверждает, что белок должен удовлетворять потребности организма в аминокислотах не только по количеству. Данные вещества должны поступать в организм человека в определенных соотношениях между собой.

Процесс синтеза белков идет в организме постоянно. Если хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным нарушениям здоровья - от расстройств пищеварения до депрессии и замедления роста у детей. Разумеется, данное рассмотрение вопроса весьма упрощенное, т.к. функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК.

Также, кроме белков, из аминокислот образуется большое количество веществ небелковой природы (см. ниже), выполняющих специальные функции. К ним, напроимер, относится холин (витаминоподобное вещество, входящее в состав фосфолипидов и являющееся предшественником нейромедиатора ацетилхолина - Нейромедиаторы - это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты крайне необходимы для нормальной работы головного мозга).

2. Небелковые функции аминокислот

Нейромедиатор аминокислоты

Прим.: Нейромедиаторы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани или железистым клеткам. Для получения информации от собственных тканей и органов организм человека синтезирует особые химические вещества - нейромедиаторы. Все внутренние ткани и органы тела человека, «подчиненные» вегетативной нервной системе (ВНС), снабжены нервами (иннервированы), т. е. функциями организма управляют нервные клетки. Они как датчики собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них корректирующие воздействия идут к периферии. Любое нарушение вегетативной регуляции приводит к сбоям в работе внутренних органов. Передача информации, или управление, осуществляется с помощью специальных химических веществ-посредников, которые называются медиаторами (от лат. mediator - посредник) или нейромедиаторами. По своей химической природе медиаторы относятся к различным группам: биогенным аминам, аминокислотам, нейропептидам и т. д. В настоящее время изучено более 50 соединений, относящихся к медиаторам.

В организме человека многие аминокислоты используются для синтеза других молекул, например:

  • Триптофан является предшественником нейромедиатора серотонина.
  • L-Тирозин и его предшественник фенилаланин являются предшественниками нейромедиаторов дофамина катехоламинов, адреналина и норадреналина.
  • Глицин является предшественником порфиринов, таких как гем.
  • Аргинин является предшественником оксида азота.
  • Орнитин и S-аденозилметионин являются предшественниками полиаминов.
  • Аспартат, Глицин и глутамин являются предшественниками нуклеотидов.

Тем не менее, все еще известны не все функции других многочисленных нестандартных аминокислот . Некоторые нестандартные аминокислоты используются растениями для защиты от травоядных животных. Например, канаванин является аналогом аргинина, который содержится во многих бобовых, и в особо крупных количествах в Canavalia gladiata (канавалия мечевидная). Эта аминокислота защищает растения от хищников, например насекомых, и при употреблении некоторых необработанных бобовых может вызывать заболевания у людей.

Классификация протеиногенных аминокислот

Рассмотрим классификацию на примере 20 протеиногенных α-аминокислот, необходимых для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α-аминокислотами. На их примере можно показать дополнительные способы классификации. Названия аминокислот обычно сокращаются до 3-х буквенного обозначения (см. рис. полипептидной цепи вверху страницы). Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

1. По строению бокового радикала выделяют:

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин) — соединения, не содержащие ароматических связей.
  • ароматические (фенилаланин, тирозин, триптофан)

Ароматические соединения (арены)

— циклические органические соединения, которые имеют в своём составе ароматическую систему. Основными отличительными свойствами являются повышенная устойчивость ароматической системы и, несмотря на ненасыщенность, склонность к реакциям замещения, а не присоединения.

Различают бензоидные (арены и структурные производные аренов, содержат бензольные ядра) и небензоидные (все остальные) ароматические соединения.

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность;

  • серусодержащие (цистеин, метионин), содержащие атом серы S
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH 2 -группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

2. По полярности бокового радикала

Существуют неполярные аминокислоты (ароматические, алифатические) и полярные (незаряженные, отрицательно и положительно заряженные).

3. По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

4. По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей - незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е.их синтез происходит в недостаточном количестве, особенно это касается детей.

Таблица 1. Классификация аминокислот

Химическая структура

Полярность боковой цепи

Изоэлектри-ческая точка рI

Молеку-лярная масса, г/моль

Степень гидрофильности

Полярность боковой цепи

1. Алифатические

Высокогидрофильные

Аланин

Глютамин

Валин *

Аспарагин

Глицин

Глютаминовая кислота

10,2

Изолейцин*

Гистидин

10,3

Лейцин*

Аспарагиновая кислота

11,0

2. Серосодержащие

Лизин *

15,0

Метионин *

Аргинин

20,0

Цистеин

Умеренно гидрофильные

3. Ароматические

Треонин *

Тирозин

Серин

Триптофан*

Триптофан *

Фенилаланин*

Пролин

4. Оксиаминокислоты

Тирозин

Серин

Высокогидрофобные

Треонин *